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FOREWORD

This report summarizes the test activity and post-test data analysis for high heat transfer
and low heat transfer heat exchanger designs. The heat exchangers were tested and evaluated for
application to the RL10-1IB derivative multi-mode thrust engine. The work was performed in
compliance with the requirements of NASA Lewis Research Center Contract NAS3-24738.

Testing was performed from 17 September to 8 December 1986. Testing was conducted and
reported by Paul G. Kanic, Senior Test Engineer. The effort was headed by Thomas D. Kmiec,
Project Engineer.

The following individuals have made significant contributions to the preparation of this
report: Donald E. Galler, Raymond B. Kaldor, Luis J. Lago, and Ken Maynard.
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INTRODUCTION

Low thrust cryogenic rocket engine operation offers attractive advantages for space travel.
These include the capability for efficient engine thermal conditioning and the availability of
propellant settling thrust. Making use of a heat exchanger during low thrust operation eliminates
the need for an active control system that would otherwise be necessary. The heat exchanger uses
hot gaseous hydrogen from the chamber jacket discharge as shown in Figure 1 to vaporize liquid
oxygen in a stable manner, i.e., with minimal pressure and/or flow oscillations. Low thrust
operation is normally at one of two levels: Tank Head Idle (THI) which is at 1-2% of rated
thrust, and Pumped Idle (PI), which is at 10% of rated thrust.

During Phase 3 of the RL10 Product Improvement Program (PIP), an Oxidizer Heat
Exchanger (OHE) was designed, fabricated, and tested at both the component and engine levels.
These activities are reported in References 1, 2, and 3. Phase 4 of the RL10 PIP included a
second iteration on the OHE concept, including redesign, fabrication, and component test of two
independent OHE designs. One design makes use of a low heat transfer core to promote stable
oxygen vaporization, while the other uses a high heat transfer approach in combination with a
volume to attenuate pressure and flow oscillations. :

The test units were delivered to Pratt & Whitney in August and September of 1986. Testing
took place during the period from 17 September to 8 December 1986. Further details of the test
units, flow bench, data acquisition, and data analysis can be found in the body of this report.
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PURPOSE

Since both heat exchanger designs were new and previously untested, the series of test flows
described in this report was intended to determine performance characteristics of each heat
exchanger. Of particular interest was performance at the THI and PI design points, including
exit quality, pressure and flow oscillations, and core pressure drops. In addition, possible internal
degradation, manifesting itself as cross-circuit leakage, was monitored to determine if structural
integrity was maintained during tests. The purpose of this report is to briefly describe the test
items and to present in detail the test configuration, data obtained, and post-run data analysis to
determine each heat exchanger’s performance and suitability for engine operation.
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SCOPE

This report presents all aspects of this heat exchanger performance test effort, including
test bench configuration, test points, and analysis of two high heat transfer oxidizer heat
exchangers and two low heat transfer oxidizer heat exchangers. The bulk of the testing was
concentrated at or near the design points. Unit-to-unit repeatability was checked at the pumped
idle design point only, and the effect of gravity (inversion) testing was performed at THI
conditions only. This arrangement allowed the most cost-efficient determination of heat
exchanger performance at the worst case conditions for each situation.
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TEST ARTICLES

HIGH HEAT TRANSFER OHE

The high heat transfer OHE is a single, self-contained aluminum unit encompassing a
cross-counterflow plate-fin core within a tank-shaped volume. All-aluminum construction
minimizes weight while retaining favorable heat transfer characteristics. A schematic of the
internal configuration with external dimensions is shown in Figure 2. Liquid oxygen enters
through the bottom inlet flange and flows through a bellows into the core, where it absorbs heat
from the adjacent hydrogen passages. The oxygen discharges into a volume, and exits the OHE
through the discharge flange. The hydrogen enters through the inlet flange and flows through a
manifold into stage 2 of the core. It then proceeds through a turnaround manifold into stage 1,
discharges into the hydrogen half of the volume, and exits the OHE through the discharge flange.
A complete description of the high heat transfer OHE can be found in Reference 4. Figure 3
presents a photograph of the high heat transfer OHE.

The oxygen discharge volume serves to attenuate flow oscillations by providing a damping
area for pulsing expansion of gases formed by violently boiling liquid. These pulses are further
reduced by the oxygen discharge flange, which serves as an attenuating orifice to the pulsing
oxygen. The hydrogen volume, which is separated from the oxygen volume by a dividing plate,
serves no attenuating function; it merely acts as a manifold to collect the hydrogen prior to
discharge. The core is suspended within the volume by the dividing plate. Since the core is
completely contained within the volume, it does not sustain the full proof pressure, resulting in a
lower strength requirement with its associated weight savings.

Each high heat transfer OHE was identified as P/N P-10770 and was designed and
manufactured by Alpha United, Inc. to comply with the requirements of Purchase Performance
Spec (PPS) F-654. The units tested were S/N 002 and S/N 003. Each unit weighed
approximately 32 lb dry.

LOW HEAT TRANSFER OHE

The low heat transfer OHE is a single, self-contained aluminum unit with a three-stage,
plate-fin core of cross-counterflow configuration. Figure 4 presents a schematic of the heat
exchanger with external dimensions. It was designed to meet the requirements of Purchase
Performance Specification (PPS) F-654. Liquid oxygen enters through the bottom inlet flange
and progresses through a manifold to the core. As the oxygen passes through stages 1, 2, and 3 of
the core in a straight line, it vaporizes and exits through the discharge manifold and flange. The
hydrogen enters through the inlet flange and manifold and enters stage 3 of the core. After
passing through stages 3, 2, and 1 in succession, the hydrogen discharges through the exit
manifold and flange. A more detailed description of the low heat transfer OHE can be found in
Reference 5. A photograph of this OHE is shown in Figure 5.

To prevent violent oxygen boiloff and the associated flow instability, this heat exchanger
uses a low heat flux over a large heat transfer area for gradual rather than rapid vaporization.
Excessive heat transfer is prevented through the use of a resistance layer between the oxygen and
hydrogen flow layers. This resistance layer is vented to vacuum, providing a thermal barrier to
heat flow from the hydrogen to the oxygen.
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Each low heat transfer OHE was identified as P/N UA538949-1 CKD10001 and was
manufactured by United Aircraft Products, Inc. The units tested were S/N UAP R0001 and S/N
UAP R0002. Each unit weighed approximately 64 1b dry.

FLOWBENCH CONFIGURATION

All flows took place on an E-6 stand, which is a liquid oxygen/liquid hydrogen test stand
normally used to test RL10 rocket engines at high altitude conditions. Existing stand capabilities
were such that relatively minor modifications were necessary to obtain conditions unique to heat
exchanger testing. The stand has the capability to flow the following fluids: liquid and gaseous
oxygen, liquid and gaseous hydrogen, gaseous nitrogen, gaseous helium, and air. Also, a vacuum
pump is available for use with the low heat transfer OHE resistance cavity. Stand modifications
to facilitate OHE testing were kept to a minimum to minimize cost impact and were structured
such that engine test programs could be run concurrently if necessary.

The following additions were made to the stand to allow heat exchanger testing:

o Plumbing from the LO, supply line to the OHE, and from the OHE to the LO,
dump line

o Plumbing from the GH, supply line to the OHE, and from the OHE to the H,
burnstack

¢ Valves and pressure relief devices to allow control of fluids and provide safety
¢ Orifices upstream of the OHE inlets for LO, and GH, flow measurement
+ Plumbing from the vacuum pump to the OHE

¢ Four electrical resistance element heaters providing a total of 92 kw of heat
for high temperature hydrogen flows

¢ Stand electrical modifications to supply and control power to the heaters

o Sufficient instrumentation at various locations in the inlet and discharge lines
as required by the test plan.

A flow schematic of the test stand showing plumbing routing and valve locations is shown
in Figure 6.

After being cleaned for liquid oxygen service, the test item (OHE) was semi-rigidly mounted
with support provided primarily by an overhead rod and turnbuckle. Fiberfrax insulation was
wrapped around the OHE, the oxygen flow measurement orifice, and the LO, inlet line
approximately fifteen feet upstream of the OHE. Aluminum foil was then used to isolate the
insulation layer from ambient air.

Occasionally during testing, minor additional stand modifications were necessary to
accomplish test objectives. These modifications, such as changing the location of bypass flow
plumbing to facilitate stand cooldown, were made as needs were identified.

10
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TEST PROGRAM

The test program was originally intended to be as defined in the Oxidizer Heat Exchanger
Performance Test Plan dated 28 January 1986 and revised 27 February 1986. The plan addressed
test stand considerations, instrumentation, and the OHE inlet conditions for each of the 86 test
points required for each design. Provisions for inverted OHE testing (O, inlet at the bottom) to
determine the effects of gravity on performance were included in the plan. It also provided for
testing of a second unit of each design to check for unit-to-unit performance repeatability.

Although exact test points were defined in the test plan, instability problems encountered
during real-time data acquisition prevented the accurate setting of oxygen flows. Apparently,
pressure pulses generated during off-design point flows were propagating back to the O, flow
measurement orifice. The resulting large variations in the orifice differential pressure caused
wildly fluctuating flow measurements, which were impossible to set with any degree of accuracy.
Therefore, a range of flows near the design points were explored until stability was found. Once
an area of stability was located, the limits of that stable area could be explored. The test points
obtained reflect this approach.

An intermediate range of flows was outlined in the test plan; however, since there were no

design points in this range, and given the difficulty in setting the oxygen flows, the additional
effort of testing in this area was not justified by the resultant limited additional information.

12




RUN SUMMARY

HIGH HEAT TRANSFER OHE

The first high heat transfer OHE S/N 002 was mounted in E-6 stand on 4 September 1986
and was identified as Rig F-33045. Following installation of temperature probes and pressure
transducers, a complete leak check of the entire system was completed. A test flow through the
LO, and GH, circuits was performed on 11 September, followed by a repeat leak check. After
rectifying instrumentation problems and verifying that the data recording system was operating
properly, flows were begun. On this unit, PI and THI areas of stability were investigated with the
OHE oriented such that the O, inlet was from beneath. The high heat transfer heat exchanger is
shown mounted in the test stand in Figures 7 through 9.

The second high heat transfer OHE S/N 003 was mounted in E-6 stand on 4 December
1986 and was identified as Rig F-33048. The second unit was used primarily to check unit-to-unit
performance repeatability and to investigate OHE performance while operating in an inverted
position.

The following is an accounting of each flow and the prime objectives accomplished.

Rig F-33045 — High heat transfer OHE S/N 002

9/4/86 OHE mounted in E-6 stand.

Flow 1.01 — Checkout flow to cold shock stand system and leak check connections. All

9/11/86 leaks found and repaired.

Flow 1.02 — Planned PI test points were to be run. While trying to set OHE inlet

9/17/86 conditions, the LO, tank rupture disk blew. Shutdown flows to replace
disk.

Flow 1.03 — Planned PI test points were to be run. At the high GH, flows, the

9/18/86 needed OHE H, inlet temperature was not reached. Shutdown flows to
increase heater thermostat levels.

Flow 1.04 — Planned PI test points were to be run. While attempting to set the first

9/18/86 point, had OHE oxygen inlet pressure abort. Recycled abort system and

attempted to continue. Repeated OHE oxygen inlet pressure abort. Appar-
ently, violent boiling was taking place as the hot hydrogen contacted the
OHE, which was filled with LO,. Since the LO, control valve down-
stream of the OHE was nearly closed for the lower lox flows, pressure
pulses were propagating back through the OHE inlet, activating the
abort.

Since this situation did not approximate actual engine conditions, the
sequence in which flows were introduced to the OHE was changed. In-
stead of initially flowing LO, through the entire system, a bypass was
installed at the OHE inlet, and LO, flow was permitted only up to the
OHE inlet. After the hydrogen conditions were set, LO, flow would be
introduced through the heat exchanger.

13
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Flow 1.05
9/23/86

Flow 1.06
9/23/86

" Flow 1.07

9/24/86

Flow 1.08
9/24/86

10/2/86

Rig F-33048
12/4/86

Flow 1.01
12/5/86

Flow 1.02
12/8/86

Flow 1.03
12/8/86

12/12/86

Also, oxygen instability caused large oscillations in the flow readings, mak-
ing it impossible to set oxygen flow conditions. As a result, it was neces-
sary to deviate from the test plan and pursue an alternate plan to
tnvestigate a range of flows near the PI conditions in an effort to locate
an area of stability. This was done by gradually opening the downstream
oxygen control valve in intervals to provide test points with gradually
increasing oxygen flows.

Investigative range of test points in the PI range were to be run. PI
points No. 90 through No. 99 were recorded in addition to slow speed (2
scans/second) transient data. These points were taken as the downstream
oxygen control valve was opened in intervals from full closed to full open.

Investigative range of test points in the PI range near the area of stabili-
ty found in Flow 1.05. Points No. 100 through No. 108 were recorded.
The limits of stability were investigated during this flow.

Investigative range of test points in the THI range. Points No. 109 and
No. 110 were recorded. Some problems were experienced in cooling down
the O, inlet line sufficiently to provide liquid at the OHE inlet. This was
traced to instrumentation discrepancies which were corrected for the next
flow. Also, preliminary post-run date indicated insufficient time was al-
lowed for thermal stabilization between points.

Investigative range of test points in the THI range. Points No. 111
through No. 120 were recorded. Additional time was allowed between
points to ensure all thermal transients were complete and a steady-state
condition had been achieved.

High heat transfer OHE S/N 002 was dismounted from E-6 stand.

High heat transfer OHE S/N 003
OHE mounted in E-6 stand

Pumped idle flows for repeatability check were run. Points 30 through 47
were recorded. A range of PI flows was made and a single additional
point from the previous high heat transfer OHE was duplicated to enable
a direct one-on-one comparison of PI conditions for the repeatability
check.

Tank head idle flows were run with the OHE inverted such that the O,
inlet was on the top. A range of flows and conditions were explored in
an effort to locate an area of stable operation. Points 50 through 53 were
recorded. Flow and pressure measurements indicated some poorly defined
areas of limited stability. It appeared that O, gas produced when the
liquid droplets contact the OHE core were rising back up through the
inlet tube and propagating back to the O, flow measurement orifice.

Repeat of Flow 1.02, except an off-scale temperature measurement was
corrected. Points 54 through 60 were recorded.

High heat transfer OHE S/N 003 was dismounted from E-6 stand.

14



LOW HEAT TRANSFER OHE

The first low heat transfer OHE S/N UAP R0001 was mounted in E-6 stand on 6 October
1986 and was identified as Rig FR-33046. Temperature probes and pressure transducers were
installed in the OHE, followed by an instrumentation and recording system checkout. After leak
checks were completed, flows were begun. The low heat transfer heat exchanger is shown
mounted in the test stand in Figures 10 through 12.

The second low heat transfer OHE S/N UAP R0002 was mounted in E-6 stand on
19 November 1986 and was identified as Rig F-33047. The second unit was used primarily to
check unit-to-unit performance repeatability and to investigate OHE performance while
operating in an inverted position. The following is an accounting of each flow and the primary
objectives accomplished.

Rig FR-33046 — Low heat transfer OHE S/N UAP R0001

10/6/86 OHE mounted in E-6 stand.

Flow 1.01 — Investigative range of test points in the THI range. Points No. 130
10/7/86 through No. 139 were recorded.

Flow 1.02 — Investigative range of test points in the PI range. Points No. 140
10/8/86 through No. 155 were recorded. Due to a condition similar to the

high heat transfer OHE, violent boiling caused oxygen flow oscilla-
tions of sufficient magnitude to preclude setting test points. Therefore
the downstream oxygen control valve was again gradually opened in
intervals while test points were recorded, in an effort to search for a
stable operating area.

Flow 1.03 — Repeat of Flow 1.02. Recorded points No. 156 - No. 161.

10/8/86

10/13/86 — Low heat transfer OHE S/N UAP R0001 was dismounted from E-6
stand.

Rig F-33047 — Low heat transfer OHE S/N UAP R0002

11/19/86 OHE mounted in E-6 stand

Flow 1.01 — Pumped idle flows for repeatability check run. Points 1 through 16

12/2/86 were recorded. A range of pumped idle flows were made and a single

additional point from the previous low heat transfer OHE was dupli-
cated to enable a direct one-on-one comparison of PI conditions for
the repeatability check.

Flow 1.02 — Tank head idle flows were made with the OHE inverted such that

12/3/86 the O, inlet was on the top. A range of flows and conditions were
explored in an effort to locate an area of stability. Points 17 through
22 were recorded. No areas of stability were found. It appeared that
0, gas produced when liquid droplets contacted the OHE core were
rising up through the inlet tube and propagating back to the O, flow
measurement orifice.

12/4/86 — Low heat transfer OHE S/N UAP R0002 was dismounted from E-6
stand.

15
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Figure 7. High Heat Transfer OHE Mounted in E-6 Stand (Left Side View)
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Figure 8. High Heat Transfer OHE Mounted in E-6 Stand (Right Side View)
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Figure 9. High Heat Transfer OHE Mounted in E-6 Stand (Front View)
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Figure 10. Low Heat Transfer OHE Mounted in E-6 Stand (Front View)
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CROSS-CIRCUIT LEAKAGE TESTS

Any leakage which allows hydrogen and oxygen to come in contact with each other is of
primary concern in the OHE. Therefore, leakage checks were conducted as a safety measure and
also as a method of monitoring the internal structural integrity of the OHE. A baseline leakage
measurement was obtained before cold flows began, and additional measurements were taken on
every day that flows took place.

The leakage measurement procedure was as follows:

O, circuit to H, circuit — A GN, pressure source was connected to the O,
circuit. A leakage measurement device was connected to a port in the H,
circuit while the remaining H, ports were capped. A 100 psig GN,, pressure
was applied and maintained for 5 minutes, after which a measurement was
taken.

H, circuit to O, circuit — Same as above, except the pressure source was
connected to the H, circuit and the leakage measurement device was
connected to the O, circuit.

The procedure was the same for both heat exchanger designs. A summary of the leakage
test results is shown in Table 1. Although one high heat transfer heat exchanger did exceed the
10 sccm OHE specification limit, at no time were any of the measured leakage rates considered to
be a safety hazard.

Since leakage rates did not increase between runs, structural degradation due to thermal
and pressurization cycles did not appear to pose a problem.

22



Table 1. OHE Cross-Circuit Leakage Check Summary
Leakage
High Heat Transfer OHE (SCCM)
S/N 002  9/11 (Baseline) H, — O, 45
0, — H, 6.0
9/17 H, — O, 40
0, — H, 2.0
9/18 H, — O, 5.0
0, — H, 6.5
9/23 H, — O, 45
0, — H, 6.0
S/N 003 12/4 (Baseline) H, — 0, 100
0, — H, 100
12/5 H, — O, 100
| 12/12 H, — O, 100
1| 0, — H, 100
T Low Heat Transfer OHE
!
S/N UAP R0001  10/6 (Baseline) H, — O, 0
‘ 0, — H, 0
i 10/7 H, - 0, 0
! 0, — H, 0
| 10/8 H, — 0, 0
L 0, — H, 0
: S/N UAP R0002  12/1 (Baseline) H, — O, 0
0, — H, 0
12/2 H, — O, 0
\ 12/3 H, — O, 0
f 0, — H, 0
1 Taze
|
i
|
]
!
23
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PERFORMANCE ANALYSIS

GENERAL
Two basic assumptions were made in the OHE performance analysis approach. These were:

1. All of the heat provided by the hydrogen was transferred to the oxygen. This
assumption was made because the hydrogen temperature was near the
ambient test cell temperature, minimizing the possibility of external heat
leak. Also, insulation around the OHE acted as an additional barrier to
unintended heat flow.

2. Oxygen entered the OHE in a liquid state (saturated or subcooled) and
discharged from the OHE in a gaseous state (saturated or superheated). A
large discrepancy between heat rejected by the hydrogen and heat accepted
by the oxygen for certain analyzed points indicated that either the oxygen
entering the OHE was not all liquid or the oxygen leaving the OHE was not
all gas. Examination of other data could usually isolate the cause to one of
these two reasons. The data could then be interpreted accordingly.

By adding the oxygen enthalpy rise (determined from the hydrogen heat flux per
assumption No. 1) to the inlet enthalpy, the exit quality could be determined for any two-phase
flow situations discovered while applying assumption No. 2. In such instances, this process was
used because pressure and temperature values alone are not sufficient to determine exit quality
for two-phase flow. A complete explanation of the analysis methodology is in the discussion
section of Appendix A. Pressure drop information was directly available from the OHE
instrumentation.

The actual flows deviated from the original test plan due to unanticipated instability
problems. This prompted investigation of a range of flows in search of an area of stability. As test
data points were recorded throughout this process, many points showed instability associated
with violent oxygen boiling. The stable points provided the most useful data, and stability at the
pumped idle points was concentrated primarily near the design points for both heat exchanger
designs. Tank head idle performance for both designs was stable at all flows with the OHE in the
upright position. Of course, since the primary areas of interest are at the THI and PI design
points, the bulk of the analysis was concentrated there.

Specific data and performance analyses are presented in Appendixes A, B, and C. Appendix
A presents data and evaluates performance of the first high heat transfer unit (S/N 002) and the
first low heat transfer unit (S/N UAP R0001). This analysis was limited to tank head idle and
pumped idle points with the test units in the upright position, and liquid oxygen entering from
below. Appendix B presents data and discussion of the performance of the second units of each
design (high test transfer unit S/N 003 and low heat transfer unit (S/N UAP R0002 ) with
specific attention given to unit-to-unit repeatability and performance while inverted (oxygen
entering from the top).

Appendix C presents a comprehensive discussion of all heat exchanger testing and data
obtained. In this analysis, particular emphasis is placed on the heat transfer characteristics of
each heat exchanger design.
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Engineering Division

To: D. E. Galler

From: Ken Maynard

Subject: Oxidizer Heat Exchanger Test Analysis
Date: November 7, 1986

Copy To: W. M. Adamski, J. R. Brown, R. R. Foust, P. G. Kanic, T.
D. Kmiec, C. D. Limerick, R. J. Peckham, C. W. Ring, R.
H. Wright, .File

Reference: "Oxidizer.Heat Exchanger Performance Tésf PTan",
' P.G. Kanic to T. D. Kmeic, 2/27/86

SUMMARY

An Oxidizer Heat Exchanger (OHE) will be incorporated in the RL10-IIB multi-
mode low thrust engine. The heat exchanger uses gaseous hydrogen to vaporize
1iquid oxygen prior to injection into the thrust chamber. Two flight rated
designs for this heat exchanger completed testing 10/8/86. Both designs suc-
cessfully vaporized the LOX while maintaining oxidizer side stability, but ex-
ceeded the desired pressure loss. The effect of this increased pressure 1loss
will be investigated with steady-state simulation of the engine.

DISCUSSION

The OHE is required on the RL10-IIB to provide stable vaporized oxygen flow to
injector when operating in the low thrust modes of pumped idle (PI) and tank
head idle (THI). Without the OHE, liquid oxygen flow develops very low pres-
sure drops across the injector leading to combustion instability. Energy from
the gaseous hydrogen at the jacket discharge is used to vaporize the oxygen.
In the PI mode the heat exchanger is required to produce a quality of 0.95 or
greater at the oxidizer side exit. In the THI mode the oxygen should be fully
vaporized. During full thrust operation the OHE provides gaseous oxygen for
tank pressurization.

Two designs where tested to evaluate performance and determine which to use on
the testbed engine. One design is from United Aircraft Products, Inc. and uses
a low heat transfer (LHT) approach to slowly increase oxygen energy above 5%
vapor and avoid the severe oscillations associated with nucleate boiling. The
other OHE comes from Alpha United, Inc. and uses a high heat transfer (HHT)
approach, The HHT design incorporates an integral downstream volume to damp
oscillations caused by the rapid vaporization.

The analysis approach used assumed all the heat flux from the hydrogen was
transferred to the oxygen. This assumption proved adequate for the test pur-
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poses when the heat flux calculations from both sides were compared. This com-
parison was valid for stable points where the oxygen was fully vaporized. The
heat exchangers were well insulated so that outside heat input was negligible.
The heat flux was calculated by knowing the hydrogen inlet and exit conditions
along with flowrate. Then using the oxygen inlet'conditions, flowrate, and hy-
drogen heat flux, the oxygen enthalpy rise was calculated. The quality was
determined using an oxygen property call on exit pressure and calculated exit
enthalpy. This approach was taken because there is no way of determining oxy-
gen quality for two-phased flow from just pressure and temperature measure-
ments. Oxygen exit measurements were used to determine heat flux for steady
flow points where the hydrogen heat flux was sufficient to vaporize the oxy-
gen. Then a comparison of heat transfer could be made. The hydrogen side
measurements, and thus the hydrogen heat flux calculations, were considered to
be more reliable than the oxygen side. This was because:

1. The hydrogen was gaseous throughout, allowing consistent flow calcu-
lations, temperature, and pressure measurements.

2. Unreliability_on the oxygen exit measurements due to two-phased flow.

3. The oscillations in oxygen flow at certain flowrates due to the stand con-
figuration.

4, The difficulty in getting liquid oxygen at the heat exchanger inlet due to
stand limitations.

The hydrogen side effective area was calculated using the flow parameter asso-
ciated with a particular pressure ratio. The oxygen side effective area was
approximated for the stable flow points using the pressure drop and an average-
density across the heat exchanger.

Table 1 shows all test points run for the HHT design. For the reasons listed
above stable test data was limited. Also, the oxygen inlet pressure was 1lim-
ited to 90 psia by of the test stand, therefore the 110 psia inlet pressure
specification for PI operation could not be obtained. The HHT design PI test
point 105, shown in Table 2, provided stable flow and agreement between hydro-
gen and oxygen heat flux. This point shows that the oxygen was vaporized.
However, the pressure losses on both sides were approximately twice the re-
quirements. Design point hydrogen flowrate for THI was unavailable however,
good performance was obtained with design point oxygen flow while hydrogen
flow was both below (test point 116? and above (test point 119) the design
point flowrate. The pressure drop on the oxidizer side was well within the re-
quirement. Table 2 shows test points 116 and 119 along with the design point
specifications.

Table 3 shows results of the LHT design in the THI and PI modes. THI test
point 138 shows flowrates near design on the hydrogen side but exceeds the re-
quiremeni on the oxygen side. Despite the increased flow the oxygen was fully
vaporized. The pressure loss on the hydrogen side was within the specification
while the oxygen side, with the high flowrate, exceeded the specification
slightly. PI test point 156 was near design specifications and indicated that
the oxygen was vaporized. This was considered a good data point because the
oxygen flow was stable and both heat flux calculations agreed. Again, the hy-
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drogen side pressure drop was within specification while the oxidizer side was
not. Table 4 shows these points separately along with the .specification re-
quirements. . '

Tables 5 and 6 show the heat exchanger oxygen discharge pressure oscillations
of both heat exchanger designs. The source of the oscillations was not the
heat exchangers but the difficulty in stabilizing the flow upstream of the
heat exchangers. It can be seen at points where the flow conditions were
steady that the heat exchangers maintained the the oxidizer side stability.

CONCLUSIONS

For the United Aircraft Product, Inc. LHT design the data is conclusive and
shows that the heat exchanger meets the requirements on oxygen exit quality of
0.95 or greater in both the PI and THI modes while maintaining stability.
This design meets the pressure loss requirement on the hydrogen side in both
operating modes but exceeds it on the oxygen side during PI operation.

The data for the.Alpha-United, Inc. HHT design showed that the heat exchanger
meet the requirement while operating in PI. There is data to indicate that
the heat exchanger will vaporize the THI oxygen flowrate with hydrogen
flowrates much higher or lower than design point. The HHT design also main-
tained the oxidizer side flow stability, but exceeded pressure 1loss require-
ments on both sides in the PI mode.

L Mt

RL10 Systems Performance
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PRATT & WHITNEY
Government Products Division

INTERNAL CORRESPONDENCE

To: D.E. Galler

From: Raymond B. Kaldor

Subject: Oxidizer Heat Exchanger Test Analysis of
Second Units

Date: March 5, 1987

Copy To: J.R. Brown, R.R. Foust, P.G. Kanic, T.D. Kmiec, C.D.
Limerick, R.J. Peckham, W.C. Ring, R.H, Wright, File

Reference: 1. Oxidizer Heat Exchanger Performance Test Plan,

February 27 1986, by P.G. Kanic

2. Oxidizer Heat Exchanger Performance Test Plan,
November 7 1986, by Ken Maynard

3. Low Heat Transfer Oxidizer Heat Exchanger Design
and Analysis Report, January 30 1987, FR-19135-2

4. High Heat Transfer Oxidizer Heat Exchanger Design
and Analysis, January 30 1987, FR-19289-1

HIGHLIGHTS

o The United Aircraft Products (UAP) low heat transfer rate unit 2
heat exchanger gasified liquid oxygen to above .95 quality consist-
ently. The unit 2 Alpha United (AU) high heat transfer rate heat
exchanger did not consistently gasify the liquid oxygen above .95
quality at pumped idle (PI). At tank head idle (THI) while in-
verted, unit 2 of each design completely vaporized the oxygen.

o PI pressure loss of both the oxygen and hydrogen flows for both the
UAP and AU models is projected to exceed the maximums of references
3 and 4. THI pressure loss of both the oxygen and hydrogen flows
for both the UAP and AU models will be under the maximums of refer-
ences 3 and 4.

o Oxygen flow oscillation was not consistently under the maximum of
references 3 & 4 for either model in PI simulation. Oxygen flow os-
cillation was consistently under the maximum of references 3 & 4 for
the AU model in THI simulation while inverted. Oxygen flow for the
inverted UAP unit at THI was not stable enough to measure.

L) ; o’ A

,'k\e«’.--ﬁfml/v‘,(ﬁ L/? /\elédﬁ/l/
Raymond B. Kaldor, Ext. 4805
Systems Performance
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BACKGROUND :

heat exchanger will be used in the RL10-IIB multi-mode low thrust en-
gine. Heat from the hydrogen which has passed through the jacket will
be used to gasify liquid oxygen. During low thrust engine operation
with the heat exchanger, PI and THI, gaseous oxygen instead of liquid
oxygen would be provided to the injector, and the pressure drop across
the injector would be increased. The increased pressure loss would pro-
vide for stable combustion. Without the heat exchanger, the small pres-
sure drop across the injector could allow oxygen flow to be cut off by
instability in chamber pressure. In full thrust operation, the heat
exchanger would be wused to pressurize the 1liquid oxygen tank with
gaseous oxygen.

A primary concern of this type of heat exchanger is large oxygen flow
oscillation induced by nucleate boiling of the 1iquid oxygen within the
heat exchanger. Two heat exchanger designs were developed with this
consideration, a Tlow heat transfer rate model by United Aircraft Pro-
ducts and a high heat transfer rate model with volume damping by Alpha
United.

This report details the testing results of the second unit from each
vendor, compares unit 2 and unit 1 results for performance repeatability
of each design, and compares the performance of the different designs.

DISCUSSION

The test stand could not provide oxygen or hydrogen inlet pressures as
low as specified for THI operation, nor could the stand provide oxygen
or hydrogen pressures as high as specified for PI operation. Extrapo-
lations have been made where appropriate.

Oxygen flow oscillation references in this paper, for references 3 & 4
and for test results, are differences from minimum to maximum flow rate.

The heat exchangers provided by United Aircraft Products, a low heat
transfer rate heat exchanger, and Alpha United, a high heat transfer
rate heat exchanger, 2 units each, did not meet all criteria of refer-
ences 3 and 4.

Both units of the UAP heat exchanger adequately gasified the oxygen, but
unit 2 of the AU model did not consistently gasify to a quality of .95.
Because of problems measuring oxygen flow rate, the quality of the AU
unit 2 oxygen discharge may be different from calculated, but still less
than 1.

The second units of each model were inverted in an attempt to quantify
the effects of zero gravity (g). The oxygen flow could not be deter-
mined for the UAP unit as there were pressure drop reversals across the
Tox flow measuring orifice, so direct determination of oxygen heat gain,
oxygen flow rate and oscillation could not be made. The AU unit did
give some tests with measurable flow and the performance is reflected in
table 1 and figures with an A suffix. The oxygen flow measuring orifice
used during the second unit AU THI testing in the inverted position was
larger than the orifice used for all other THI testing. This could be
the reason why there was measurable flow during the inverted AU testing
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and there was not measurable flow during inverted UAP testing. Invert-
ing the heat exchangers tested a negative g application, not a zero g
application.

Table 1 shows the results of the second unit tests in pumped 1idle mode
in the upright position, and tank head idle mode in the inverted (nega-
tive g) position. The values are averages over a 5 second test period.
When there were pressure reversals across the oxygen flow measuring
orifice, oxygen flow rate and oscillation could not be directly deter-
mined. Some of these test points are shown with minimum values for oxy-
gen flow rate oscillation, and are noted by the > symbol.

Six test points were analyzed scan by scan. One stable test point for
each unit of both models at pumped idle (PI) and for unit 1 of both mod-
els at tank head idle (THI) in an upright position was chosen. The scan
segment chosen for each point includes the 5 second test at the end of
the segment. Of the 31 scans analyzed (arbitrarily timed from 0. to 15.
seconds, inclusive) the last 10 scans (10.5 to 15. seconds inclusive)
represent the 5 seconds used for averages. -The scan by scan analysis
shows that the oxygen 1is not undergoing a smooth and steady phase
change. During analysis, a test was considered "stable" if there were
no pressure drop reversals across the 1iquid oxygen flow measuring
orifice.

Table 2 shows the comparison of averages over 15. seconds for the above
test points selected for scan by scan analysis. The specifications
listed are from references 3 & 4. These points are used 1in figures 7
through 19.

Table 3 shows repeatability from unit to unit for both models in PI op-
eration. Units 2 of both models were not tested in THI operation in an
upright position, and units 1 of both models were not tested in THI op-
eration in an inverted position. Compared to unit 1, unit 2 of the AU
model delivered Tless hydrogen pressure loss, a wider range of oxygen
pressure loss, about the same oxygen flow oscillation, and questionable
oxygen discharge quality. The unit 2 UAP model, when compared to unit
1, delivered less hydrogen pressure loss, a wider range of oxygen pres-
sure Tloss, Tless oxyger flow oscillation and the same acceptable oxygen
discharge quality.

Figure 1 summarizes the testing of the second units of heat exchangers
from both UAP and AU. It should be noted that the stand could not pro-
vide pressures as low as specified for THI nor could it provide pres-
sures as high as specified for PI. Both models were tested in an
upright position to simulate Pl operation and in an inverted position to
simulate THI operation. The UAP model met the quality specification for
PI operation but the AU model did not. There was no published criteria
for quality in THI operation, however both designs completely vaporized
the oxygen at THI. The UAP was in compliance for hydrogen pressure loss
both in PI and inverted THI operation at the pressures tested, but the
AU was not consistently in compliance. The UAP was within or close to
compliance with oxygen flow oscillation criteria at PI simulation, but
the AU was not consistently in compliancy under similar conditions. The
UAP had pressure reversals across the flow measuring orifice for every
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test in the inverted position at THI, so no oxygen flow or oscillation
data is available. The AU model had measurable flow at THI while in-
verted but the oxygen flow oscillation exceeded the THI specification.
Both the AU and the UAP models exceeded oxygen pressure loss specified
for PI, while being tested at pressures that were Tless than specified
for PI operation. Both models had less oxygen pressure loss than speci-
fied for THI while inverted.

Figure 2 reflects repeatability, conformance to oscillation criteria and
a connection at pumped idle between oxygen flow rate, oxygen/hydrogen
flow ratio, and oxygen flow oscillation. As oxygen flow rate and flow
ratio are increased, oscillation falls. The higher the flow ratio, the
lower the rate at which heat is added per pound mass of oxygen, and the
gentler the boiling.

Figures 3 & 3A reflect THI conformance to oscillation criteria of refer-
ences 3 & 4. Figure 3 shows oscillation, oxygen flow rate, and flow ra-
tio of unit 1 of each model in the upright position. Figure 3A shows
the same information for unit 2 of the AU model in the inverted posi-
tion. The flow (and therefore the flow oscillation) of the unit 2 UAP
heat exchanger could not be determined because of pressure drop re-
versals across the oxygen flow measuring orifice. There is no obvious
relationship in THI operation between oxygen flow rate, flow ratio and
oscillation as there is at PI. As mentioned previously, the oxygen flow
measuring orifice used during inverted AU THI testing was larger than
the oxygen orifice used for all other THI testing.

Figure 4 displays oxygen flow oscillation noted for oxygen dinlet pres-
sures tested. The stand was not capable of providing inlet pressures as
Tow as specified for THI or as high as specified for PI. The wide range
of oscillation exhibited at PI inlet pressures suggests that inlet pres-
sure has little to do with oxygen flow oscillation. Figure 4A shows the
same information for the urit 2 AU heat exchanger in an inverted posi-
tion at THI.

Figure 5 shows repeatability and conformance to hydrogen pressure loss
criteria for both wunits of both models at PI, and for unit 1 of both
models at THI. The design requirements for hydrogen inlet pressure and
hydrogen pressure loss are marked on the figure. Units 1 and 2 of the
UAP model were tested over similar hydrogen inlet pressures in pumped
idle mode with good repeatability. Unit 2 of the AU model was tested
over different hydrogen inlet pressures than unit 1, with appropriate
hydrogen pressure drops noted. For both models, pressure drop across
the hydrogen side is approximated by a linear relationship to hydrogen
heat exchanger inlet pressure. If the relationship of hydrogen pressure
loss to hydrogen inlet pressure is extrapolated, neither the UAP nor the
AU model will perform to specification in PI operation, though the UAP
model is better than the AU. In THI operation, both models would give
hydrogen pressure losses under the maximum specified.

Figure 5A shows THI pressure loss of the AU model in an inverted posi-
tion. The hydrogen pressure loss to inlet pressure is the same as for
the unit 1 AU model at THI in an upright position.
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Figure 6 shows repeatability and conformance to oxygen pressure loss
criteria. The design requirements for oxygen inlet pressure and pres-
sure loss are marked on the figure for THI and PI. There is a range of
pressure loss for each model in PI operation. At specified THI pres-
sure, expected performance is better than criteria but at specified PI
pressure, expected performance is worse than criteria. Figure 6A shows
similar information for unit 2 of the AU model at THI in an inverted po-
sition. Oxygen pressure loss criteria is met.

Six test points were analyzed scan by scan for 15 seconds as mentioned
previously. Analysis results for these six test points are shown graph-
ically in figures 6 through 19. There is one symbol for every half sec-
ond.

Figure 7 shows the change of hydrogen flow rate with a change in hydro-
gen inlet pressure. The variation within each test was small and pre-
dictable. "

Figure 8 shows the scatter of oxygen flow rate against oxygen inlet
pressure. The dynamics of phase change prevent the same close corre-
lation of flow rate with pressure as noted with the single phase hydro-
gen flows, resulting in scatter of the data at PI. The scatter for the
UAP model is less than that of the AU model.

 Figure 9 shows oxygen pressure loss across the heat exchanger for inlet

pressures tested. The bulk of the data shows that pressure drop of both
the AU and the UAP heat exchangers would be greater than specified in
references 3 & 4 for PI. The phase change affects pressure loss the
same way it affects flow, causing scatter. The scatter for the UAP
model is less than that of the AU model.

Figure 10 shows hydrogen pressure loss against hydrogen inlet pressure.

Hydrogen pressure loss for an increase in inlet pressure shows the same
small predictable variation that was noted for hydrogen flow.

47



6208C

-6 - March 5, 1987

ANOMALIES

The calculated heat loss from the hydrogen was not matched by the calcu-
lated heat gain in the oxygen. The greatest error is thought to be in
the oxygen flow rate calculation because of fluctuating pressure differ-
ences across the orifice. Even the most stable test points exhibited
some orifice pressure oscillation, and a flow measuring orifice is in-
tended to be wused for steady flow. The oxygen is not simmering to a
gaseous state, but is boiling in spurts, causing pressure changes inside
the heat exchanger. Oxygen orifice pressure drop is used in the oxygen
flow rate calculation, which in turn is used to calculate oxygen heat
gain or discharge quality. If flow rate is being under estimated be-
cause of orifice pressure drop oscillation, then the heat gain is being
underestimated and the discharge quality is being over estimated. The
estimated steady state uncertainties in f]ow rate calculation is #4% for
oxygen and £5% for hydrogen.

APPENDIX

The flow rate measuring orifice geometric areas used in testing were as
follows:

Hydrogen 1.539 sq. in.
Oxygen, PI 0.374 "
Oxygen, THI, unit 2 AU inverted 0.108 * "
Oxygen, all other THI 0.048 " "

A larger oxygen flow orifice was used for the inverted THI testing of

the second unit AU heat exchanger in an attempt to reduce flow oscil-

lation. The flow of the inverted AU heat exchanger was more stable than
the flow of the inverted UAP heat exchanger with the smaller orifice, so
the performance of the two models is not comparable.

The hydrogen and oxygen flow measuring orifices are small compared to
normal engine plumbing, and this magnifies back pressure problems due to
phase change, which in turn affects flow rate calculations.

Figures 11 through 16 show the change of measured parameters with time
for the 6 selected test points considered representative of their test
series. There is one scan every half second, and the last 10 scans for
these 6 tests reflect the time period over which the 5 second average
values were obtained. This scan rate does not allow a trace of data
that exactly represents the maximum and minimum values of the measured
parameters. Therefore oxygen flow oscillation across the heat exchanger
is greater than indicated.

The figures 17 through 19 show how a small change in oxygen pressure up-
stream of the orifice affected the test of point 16. This test is for
the UAP second unit at PI.

Figure 17 shows oxygen orifice inlet pressure, oxygen orifice exit pres-
sure, and oxygen orifice pressure drop. At 8.5 seconds, the orifice in-
let pressure and the pressure drop dip slightly, then recover. This
pressure dip is not shown for the orifice exit, indicating the origin of
the pressure dip is upstream of the orifice and has nothing to do with
the heat exchanger.
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Figure 18 shows the effect this dip had on the oxygen flow and heat gain
calculations. The oxygen flow is in oscillation at 10.5 seconds, where
the 10 scans for average calculations begin. The average calculated
value of the flow is less than it was prior to the pressure dip.

Figure 19 shows the heat rate gain and loss of the oxygen (Q0) and hy-
drogen (QH). Prior to the pressure dip at 8.5 seconds, Q0 and QH were
steady and not to far apart with QO greater than QH. The difference
could be explained by the flow measurement error of either orifice. Af-
ter the pressure dip, QH shows and increase and Q0 shows a decrease to a
value less than QH.

The minor pressure dip in the supply line greatly affected the flow and
heat transfer calculations. The heat exchanger is acting as a heat
"bank" until flows stabilize, since QH shows an abrupt increase 1 scan
after the oxygen pressure dip. In the last 3 seconds shown, QH 1is de-
creasing and Q0 is increasing, presumably toward their previous levels
when flow was more stable. Also possible is an under estimation of oxy-
gen flow rate in response to the oscillating orifice pressure drop.

The conclusion from figures 11 through 19 is that the testing was not
steady state and the orifices introduced conditions that will not be
present in flight.

METHODS

Flow rate was determined with calibrated orifices that were accurate to
4% for liquid oxygen and 5% for gaseous hydrogen. The oxygen flow was
not steady state, and greater error than stated is suspected for oxygen
flow rate. Heat gain or loss is calculated by multiplying mass flow
rate by enthalpy change across the heat exchanger. If the oxygen dis-
charge temperature is less than the saturated vapor temperature for the
measured discharge pressure, then quality is calculated. The heat
gained by the oxygen is assumed to be .85 times the heat lost from the
hydrogen. This assumption is made to keep the quality calculations con-
sistent with the heat transfer calculations, where Q0 averaged .85 times
QH. In reality, the heat gained by the oxygen should be the same as the
heat 1lost from the hydrogen, but the source of the measurement errors
are not all on the oxygen side. Assuming Q0 to be equal to QH would
bias any comparison of test points having quality calculations with test
points having heat transfer calculations. The heat gained by the oxygen
is divided by the mass flow rate of the oxygen to give the change in
enthalpy of oxygen. This change in enthalpy 1is added to the inlet
enthalpy of oxygen to give discharge enthalpy. The oxygen inlet and
discharge pressures are used to give saturated 1liquid and vapor
enthalpies. Quality is directly calculated from the enthalpies.
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OXY 0SC LBMD/S

RATIO OXY/FUEL

<+ - H H : H )] H : i B |

0SC

RM

Okygén flow osci]iatfon'dec}eases.whén 6xy; --------

gen flow rate and oxygen/fuel flow ratio are{—

increased. The UAP design performed better|-
than the AU design below 2.7 1bm/s flow and|—
below 15. flow ratio.

UAP

AU

United Aircraft Products|—

Alpha United —

T PO P1 Pumped Idled e
™~ L-—; : : H :

References 3 & 4] s s
PI design point : '

yAY ;
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....... " A N—— JAY
L "+WC)M;Z§
1 :

2 3 4
OfFLO
OXYGEN FLOW RATE - LBM/S

' .fff?.ff%‘:::;f:::‘:j.;.A..........5 . : s O ] ‘
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v : ot A
= i : LN 1N
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I e Y8 ' AN
e e’ e el P8 |
N AT AN | - |
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N T e H
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----------- s e References 3 & 4

PI design point

OFLO .
OXYGEN FLOW RATE - LBM/S

02/05/87 .
KA{DOé,RAY Figure 2
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To} S e Ut STCOR VU e M A SO ARSI S
™~ tThere is not a clear relationship between oxygen flo
O rloscillation, flow rate and oxygen/fuel flow ratio. Both
< ‘|designs met oscillation limits per references 3 & 4
-T|UAP = United Aircraft Products
»n © tlau = Alpha United .
S [[THI = Tank Head Idle References 3 & 4
[Tp] ¢ . .
s THI design point
Boo' P
g 8 SO S \’\/‘/
N S N
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© vl ; i i
O £ B
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h B d : o
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1

OXY 0OSC LBMD/S

RATIO OXY/FUEL

0.5

0.4

s

0.3

There is no clear rela-[i:

Itionship between oxygen

iy ;THI

design_point;f

ZIfiow oscillation, flow

0.2

{rate, and oxygen/fuel

“{flow ratio. Oxygen

'=[ flow oscillation would

1

lexceed the THI speci-
=1fications of references

0.

B0 or SRR IR Y D0

S HH3 g 4.

0.0

0.0 0.1 0.2

0.3
OXYGEN FLOW RATE -

0.4

0.5 0.6

25

20

o e

15

fiThe.oxygen flow through the UAP mode |-+
| was

so unstable that flow rate and

10

loscillation cou]d not»be calculated.

5

0.6 0.8 1.0

Figure 3A
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PRATT & WHITNEY
UAP #2, PI, TEST POINT 16
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’Internal Correspondence  EEzESRose,

Engineering Division

!

|

| To: P. Kanic

| From: Luis J. Lago

| Subject: Evaluation And Comparison Of The Alpha United, Inc. And United
Aircraft Product, Inc. Heat Exchangers For The R10-IIB Engine

| Date:  March 16, 1987

) cc: J. Black, R. Peckham, J. Rannie, File

r

HIGHLIGHTS

o Both heat exchanger test results reveal that the oxygen is vaporized with
a quality greater than 95%, for all those cases presented in Table Al and

o At inverted orientation, neither heat exchangers satisfied the allowable
oxygen flow oscillations described in the preliminary purchase performance
specifications F-645 (see Table Al and A2).

o At normal orientation: The Alpha United Heat Exchanger exceeded the
maximum allowable pressure drop in the hydrogen circuit at pumped idle and
at tank head idle when the hydrogen is at full flow (see Table Al). The
United Aircraft Product Heat Exchanger exceeded the maximum allowable
pressure drop in the oxygen circuit at pumped idle (see Table A2).

o The best design is the Alpha United Heat Exchanger. This recommendation
is based on a better oxygen flow stability, less weight and smaller sizes
(see Table Al, A2 and Figures Al and A2).

o Final selection will be made by the Performance Group. They have to
determine if these results are acceptable with the engine performance.

f DETAILS

The RL10-IIB multi-mode low thrust engine incorporates a heat exchanger in

the engine cycle. The purpose of the heat exchanger in the engine cycle

is to vaporize liquid oxygen using energy available from gaseous hydrogen

in a stable manner prior to injection into the thrust chamber. Injection
: of gaseous oxygen provides more efficient combustion and stable engine
operation during Tank Head Idle and Pumped Idle operation.

P&W EDS 20000A Rev 2/85

81

#208C



5208C

Two individual vendor designs were tested to determine the performance of
each. One design was created and fabricated by United Aircraft Products,
Inc., and incorporates a Tlow heat transfer approach. The other concept
utilizes a high heat transfer core with an integral damping volume, and
was designed and fabricated by Alpha United, Inc. These designs are
intended to meet the requirements of Preliminary Purchase Performance
Specification (PPS) F-654. These heat exchangers were designed primarily
to operate in the following two modes. Tank Head Idle (THI) which allows
the engine to operate at 1-2% of rated thrust to provide propellant
settling and efficient engine thermal conditioning; Pumped Idle (PI)
which is 10-25% of rated thrust to provide tank pressurization is in
preparation for rated thrust operation and can be used for maneuver thrust
or low -g payload delivery. The Oxidizer Heat Exchanger (OHE) is also
used to provide gaseous oxidizer for tank pressurization during rated
thrust operation, however, the only impact on design is higher operating
pressure.

The main purpose of these tests were to demonstrate the performance of
each heat exchanger designs as specified by PPS F-654. Each heat
exchanger is designed primarily to operate in THI and PI modes. An
inversion test was included to determine the effects of gravity on OHE
performance. Two units of each design were run to demonstrate
unit-to-unit repeatability; therefore, a total of four units were tested.

The Alpha United Heat Exchanger (AU HEX.) performance test data, for units
#1 and #2, are presented in Tables Bl to B4. The oxygen heat pick-up,
pressure oscillation and delta pressure vs oxygen flow rate curves are
presented in Graphs Bl to B4 for Unit #1 and Graphs B5 to B8 for Unit #2.
The design points and test results are presented in Table Al.

The United Aircraft Product Heat Exchanger (UAP HEX.) performance test
data, for unit #1 and #2, are presented in Tables C1 to C4. The oxygen
heat pick-up, pressure oscillation and delta pressure vs oxygen flow rate
curves are presented in Graphs C1 to C4 for Unit #1 and Graphs C5 to C8

for Unit #2. The design points and test results are presented in Table
A2.
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The heat exchanger must gasify the oxygen requirements at low thrust
conditions specified herein without exceeding the maximum flow oscillation
or maximum flow instability described in the PPS F-654. The oxygen flow
oscillation AW is calculated as follows:

2
_(w 2 P
Max) * K . N _
Ppx f)p = ey VS VEPax T C *\aRy

2 _
AP _Chn) "+ My =\/Ai*p “VPuin = C *\fRypy

MIN W2« P

Assuming: A, K and f@ constant for Max. and Min. conditions.

Wuax =~ Wuin = C *[\/APMAX 'MIN]

1l
=
>
><

]
=
—
=

AW

The reason of having a maximum oxygen flow oscillation or maximum oxygen
flow instability in the PPS F-654 is because the lower the flow
oscillation, the more uniform is the combustion of the fuel and this imply
a better control of the engine thrust.

Analyzing the oxygen flow stabilities by looking at the flow oscillation
data, on Table Al and AZ2:

At PI mode, normal orientation, UAP HEX is 0.045 Lbm/sec more stable
thﬁn AU HEX. and both are within the specifications (see Table Al and
A2).

At PI mode, inverted orientation, no data available.

At THI mode, normal orientation, AU HEX. is 0.009 Lbm/sec more stable
than UAP HEX. and both are within the specifications (see Table Al
and A2).

At THI mode, inverted orientation, AU HEX. is more stable than UAP
HEX. and AU HEX. is 0.223 Lbm/sec over the specifications (see Table
Al and A2).
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At THI mode, normal orientation, hydrogen at full flow for AU HEX.,
the AU HEX. is 0.001 Lbm/sec more stable than UAP HEX. and both are
within the specifications (see Table Al and A2).

At THI mode, inverted orientation, hydrogen at full flow for AU HEX,
AU HEX. is more stable than UAP HEX and AU HEX is 0.189 me/sec over
the specifications (see Table Al and A2).

Analyzing the pressure drop from the hydrogen and oxygen circuits, on
Tables Al and A2:

At PI mode, normal orientation; A) In the hydrogen circuit, AU HEX is
1.60 PSI over the specification and UAP HEX is within the
specifications. B) In the oxygen circuit, AU HEX is 6.20 PSI over
and UAP HEX is 2.29 PSI over the specifications.

At PI mode, inverted orientation, no data available.

At THI mode, normal and inverted orientations; both circuits, on both
heat exchangers are within the specifications.

At THI mode, normal orientation; hydrogen at full flow for AU HEX:
A) In the hydrogen circuit, AU HEX is 0.7 PSI over and UAP HEX is
within the specifications. B) In the oxygen circuit, AU HEX and UAP
HEX are within the specifications.

At THI mode, inverted orientation; hydrogen at full flow for AU HEX;
both circuits, on both heat exchanger are within the specifications.

o Urge 2.

L.[J. Lo/ 17 Approved by: J. Black

Attachments
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— 1 8.50 in. dgia

FIGURE Al, HIGH HEAT TRANSFER (AU) OHE
(WEIGHT =~ 30 1bs.)
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TABLE B1

RL10 GOX HEAT EXCHANGER
ALPHA UNITED, INC.
PERFORMANCE TEST DATA
(HYDROGEN CIRCUIT)

- UNIT #1 -

TEST POINT T Hin P Hin T Hout P Hout AP Q Flow Rate
(R) (psia) (R) (psia)  (psi) (Btu/s) (1bm/s)

(PUMPED IDLE - NORMAL ORIENTATION)
638.8 43.2 593.2 37.

90. * 6 5.6 20.8 0.198
91. * 635.5 42.1 581.5 36.7 5.4 35.7 0.194
92. * 633.0 42.1 572.4 36.6 5.5 41.2 0.196
93. * 632.5 42.2 567.1 36.7 5.5 44.7 0.197
9. * 632.8 42.2 558.1 36.7 5.6 52.1 0.199
95. * 633.7 40.8 537.6 35.5 5.3 66.7 0.194
96. * 634.4 38.8 513.3 33.8 5.0 79.1 0.187
97. * 635.5 38.4 461.7 33.5 4.9 120.7 0.194
98. 635.2 33.7 294.6 29.3 4.4 245.8 0.197
99. 635.3 30.8 233.9 26.6 4.2 286.7 0.194
100. 627.6 37.2 348.1 32.5 4.7 209.5 0.206
101. 628.6 38.5 447.5 33.5 5.0 126.9 0.197
102. 628.8 32.2 233.8 27.6 4.6 302.2 0.207
103. 629.4 35.0 335.3 30.1 4.9 218.0 0.203
104. 630.5 35.3 333.2 30.5 4.8 220.7 0.204
105. 632.5 31.4 242.8 26.9 4.5 288.0 4 0.200
106. 633.3 32.1 245.1 27.4 4.7 294.8 Ao 0.206
107. 638.9 29.7 227.1 25.4 4.3 294.1 0.193
108. 641.7 30.5 244.3 25.9 4.6 278.9 4  0.193
(TANK HEAD IDLE - NORMAL ORIENTATION)
111. 599.6 24.3 565.7 21.5 2.8 12.3 o 0.102
112. 597.1 35.9 579.5 30.9 5.0 10.8 & 0.172
113, —eee- === e,emme eeeee --- e
114. ———— mme= mmeme e --- et
115. 610.2 16.0 421.4 15.5 0.5 23.1 0.034
116. 599.1 40.5 562.0 34.6 5.9 26.7 0.202
117. 603.3 41.1 578.8 35.0 6.1 17.8 0.202
118. 602.9 15.8 428.8 15.4 0.4 15.9 0.030
119. 606.9 14.8 194.0 14.8 0.0 22.9 0.015
120. 597.5 14.8 188.8 14.8 0.0 22.7 0.015

* - Unstable boiling

A - Disagreement between oxygen and hydrogen heat load, the heat load from
hydrogen was uséd to generate graphs
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90.
91.
92.
93.

107.
108.

(TANK

111.
112.
113.
114,
115.
116.
117.
118.
119.

TABLE B2

RL-10 GOX HEAT EXCHANGER
~ AEPHA UNITED,-INC. ™~
PERFORMANCE TEST DATA
(OXIDIZER CIRCUIT)

- UNIT #1 -

TEST POINT T Oin P Oin T Oout P Oout
(R)  (psia) (R) (psia)
(PUMPED IDLE:- NORMAL ORIENTATION)
* 168.0 91.6  439.0  92.1
* 169.0 89.8  411.6  89.2
* 170.0 89.9  394.9 89.9
* 171.0 90.3  381.0  90.1
* 171.0 89.0  362.2  88.8
* 171.0 90.3  274.0 - 90.0
* 170.0 89.2  232.3  88.2
* 178.7 88.9  201.9  85.1
171.8 87.7 245.6  79.1
168.8 85.1 194.0  69.1
171.4 87.4 198.0  79.0
172.3 87.8  200.2  83.6
168.1 85.3  193.9  69.0
170.0 87.6  216.9  79.7
169.6 85.9 223.0  78.0
167.2 88.4  220.5  78.9
167.2 88.3  250.7  79.6
166.3 85.4  194.5  70.4
166.9 89.0  278.2  8l.5
HEAD IDLE - NORMAL ORIENTATION)
173.4 26.8  482.0  26.4
174.6 28.8  524.1  28.4
173.1 28.9  175.9  28.2
173.1 29.2 178.1  28.5
175.4 30.7  397.6  30.2
175.8 30.7  202.5  30.0
173.6  29.2  193.9  28.2
175.4 30.6 178.8  29.8

120.

5208C

*
**k
%

- Unstable boiling
- Q calculated from oxygen test data

- Oxygen flow rate calculated from Q ca]cu]ated from hydrogen test data

AP

ONOOLVWVWLWNEPOONNODOWNNMNOOIOY

— —
NOOOOWNNONPLPOOONRRWHOOOOOO
) « o & o @ . .

—

0
0.4

O OOO0OO0O
. D)
MO~NOINN

89

20.8
35.7
41.2
44.7
52.1
66.7
79.1
120.7
245.8
286.7
209.5
126.9
302.2
218.0

Q
(psi) (Btu/s)

220.7 -~

288.7
262.2
294.1
250.8

48.1
50.4

23.1
26.7
28.6
19.6
27.9
20.0

*%
Kk
*%
*%

Flow Rate

(1bm/s)

0.139
0.249
0.295
0.323
0.394
0.585
0.775
1.278
2.322
3.702
2.595
1.374
3.495
2.229
2.216
2.595
2.464
3.573

©2.225

*k*x
*kk
*kk
kdkek
dkxk
*kk
Jokk
*k%k
*k*k

*kk

Jekk

*kk

Exit
Quality

VAPOR

, 91%

VAPOR
VAPOR
VAPOR
VAPOR
85%
VAPOR

- -

Pressure

Oscillation

(psi)

+/- 9.813
+/-13.709
+/-11.955
+/-12.284
+/-12.853
+/- 9.840
+/-11.143
+/- 6.103
+/- 8.536
+/- 0.510
+/- 0.244
+/- 4.135
+/- 0.484
+/-11.023
+/- 9.241
+/- 1.142
+/- 2.669
+/- 0.576
+/- 1.191

- -

PSI
PSI

PSI
PSI
PSI
PSI
PSI
PSI
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TABLE B3

RL-10 GOX HEAT EXCHANGER
ALPHA UNITED, INC.
PERFORMANCE TEST DATA
(HYDROGEN CIRCUIT)

- UNIT #2 -

TEST POINT T Oin P Qin T Oout P Oout AP

Flow Rate
(R) (psia) (R) (psia)

(psi) (Bgu/s) (1bm/s)

B208C

(PUMPED IDLE - NORMAL ORIENTATION)

+
Q

30 * 621.4 36.5 610.2 32.3 4, 7.6 0.189
31 * 521.3 35.3 566.6 31.2 4.10 36.2 0.189
32 * 622.2 34.7 563.6 30.7 4.00 37.9 0.185
33 * 622.3 35.1 556.9 31.0 4.10 43.3 0.189
34 * 622.4 34.8 543.9 30.7 4.10 52.2 0.189
35 * 622.0 33.6 530.9 29.7 3.90 59.0 0.184
36 * 622.3 33.1 496.7 29.3 3.80 82.5 0.186
37 * 622.1 31.9 433.4 28.3 3.60 126.2 0.187
38 622.2 25.8 225.1 22.7 3.10 273.4 0.186
39 621.8 25.0 211.0 22.0 3.00 281.1 0.185
40 621.7 26.2 236.3 . 22.7 3.50 268.2 0.188
41 621.9 24.8 219.0 21.7 3.10 269.8 0.181
42 634.1 21.8 209.2 19.5 2.30 236.8 0.151
43 678.8 18.7 182.8 17.4 1.30 215.7 0.119
44 619.9 25.3 218.0 22.1 3.20 278.1 0.187
45 612.3 28.8 229.5 24.8 4.00 309.4 0.218
46 629.1 27.2 236.3 23.5 3.70 290.4 0.200
47 619.7 27.4 224.7 23.6 3.80 302.8 0.207
(TANK HEAD IDLE - INVERTED ORIENTATION)
50 * 596.3 16.8 440.3 16.2 0.60 26.3 0.047
51 605.3 15.9 199.4 15.6 0.30 73.6 0.049
52 600.3 18.1 395.7 17.0 1.10 52.6 0.071
53 598.7 21.5 444.9 19.5 2.00 54.0 0.098
54 600.7 25.2 487.6 22.6 2.60 49.0 0.122
55 600.0 15.1 201.4 15.0 0.10 31.0 0.021
56 599.1 22.0 478.5 20.0 2.00 42.9 0.100
57 605.9 15.3 250.9 15.2 0.10 34,2 0.026
58 604.5 15.0 220.8 14.9 0.10 22.8 0.016
59 605.2 22.4 465.1 20.2 2.20 52.9 0.106
60 606.4 29.7 516.5 26.2 3.50 48.3 0.152

* - Unstable boiling
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TABLE B4

!

|

» RL-10 GOX HEAT EXCHANGER
ALPHA UNITED, INC.

r PERFORMANCE TEST DATA

L (OXIDIZER CIRCUIT)

I

|

- UNIT #2 -
Pressure
#ST POINT T 0in P 0in T Oout P Oout P Q Flow Rate Exit Oscillation
(R) (psia) (R) (psia) (psi) (Btu/s) (1bm/s) Quality

PUMPED IDLE - NORMAL ORIENTATION)

130 * 169.0 89.6 559.0 89.4 0.20 7.6 0.043 ***  YAPQOR +/- 8.656
31 * 171.8 87.6 433.2 87.2 0.40 36.2 0.247 **x " +/- 6.192
132 * 171.5 86.3 426.3 86.4 0.10 37.9 0.261 *** " +/- 5.990
133 * 171.9 89.6 403.1 89.2 0.40 43.3 0.310 *** " +/- 7.493
| 34 * 173.0 86.3 371.8 85.7 0.60 52.2 0.395 **x " +/- 7.933
1 35 * 173.1  89.1 351.0 88.4 0.70 59.0 0.463 *** " +/- 6.313
36 * 171.4  85.5 249.8 83.7 1.80 82.5 0.785 *** " +/- 8.372
37 * 170.1 87.8 207.5 83.2 4.60 126.2 1.326 ***  VAPOR +/- 8.324
38 168.01 84.1 194.9 70.9 13.20 273.4 3.326 86% +/- 1.464
39 166.6 82.8 193.8 67.9 14.90 281.1 3.777 76% +/- 0.165
40 166.7 87.5 248.8 80.7 6.80 268.1 2.077 VAPOR +/- 1.900
41 166.3 85.3 196.4 75.0 10.30 269.8 3.000 94% +/- 0.348
s 165.9 85.6 197.2 76.9 8.70 236.8 2.879 84% +/- 0.455
3 165.7 87.1 199.0 81.0 6.10 215.7 2.418 93% +/- 1.099
44 165.7 85.3 196.3 74.8 10.50 278.1 3.001 98% +/- 0.527
45 165.8 85.5 196.0 73.9 11.60 309.4 2.911 VAPOR +/- 0.331
46 165.7 90.4 240.0 82.9 7.50 290.4 2.229 ! +/- 0.378
47 166.0 88.4 197.0 77.1 11.30 302.8 3.078 VAPOR +/- 0.324
TANK HEAD IDLE - INVERTED ORIENTATION)
50 * 176.7 31.6 177.5 31.3 0.30 26.3 0.299 ***  VAPQOR +/- 6.752
51 170.3  30.61 174.9 28.9 1.70 73.6 0.808 VAPOR +/- 2.222
- 52 176.2  33.2 177.5 32.5 0.70 52.6 0.597 " +/- 0.883
53 174.2  33.0 177.3 32.2 0.80 54.0 0.504 " +/~ 0.787
) 54 171.5 33.3 177.7 32.6 0.700 49.0 0.443 VAPOR +/- 1.018
55 173.2  33.7 178.1 33.5 0.200 31.0 0.364 95% +/- 0.710
. 56 177.7  34.3 178.6 33.9 0.400 42.9 0.490 ***  VAPQOR +/- 0.334
57 178.1  34.9 257.8 34.5 0.400 34.2 0.324 *** " +/- 1.954
58 178.2  34.7 179.1 34.6 0.100 22.8 0.261 * ** " +/=- 2.211
59 170.6 41.1 182.4 40.8 0.300 52.9 0.410 ! +/- 1.453
L 60 171.6 41.4 182.8 41.1 0.300 48.3 0.385 VAPOR +/- 0.800

| - Unstable boiling

i *** - Oxygen flow rate calculated from Q calculated from hydrogen test data
b

!

|
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TABLE C1

RL10 GOX HEAT EXCHANGER
UNITED AIRCRAFT PRODUCT, INC.
PERFORMANCE TEST DATA
(HYDROGEN CIRCUIT)

- UNIT #1 -

TEST POINT T Hin P Hin T Hout P Hout Q Flow Rate AP
(R) (psia) (R) (psia) (Btuys) (ibm/s)  (psi)

(TANK HEAD IDLE - NORMAL ORIENTATION)

130 604.0 15.5 239.2 15.3 42.3 0.042 0
131 601.5 17.9 420.0 17.2 33.9 0.074 0
132 600.3 21.2 493.7 19.9 45.5 0.103 1
133 600.0 23.3 504.2 21.7 43.6 0.121 1
134 599.3 21.0 490.0 © 19.8 26.8 0.101 1
135 604.3 21.3 527.6 20.1 27.34a 0.101 1
136 601.9 21.0 500.9 19.8 74.9 0.100 1
137 598.9 20.1 411.5 19.0 43,2 - 0.100 1
138 607.7 19.2 315.5 18.2 107.3 4 0.100 1
139 601.7 20.9 474.4 19.6 46.2 A 0.102 1
(PUMPED IDLE - NORMAL ORIENTATION)
140 * 634.1 38.2 632.9 35.3 0.8 0.193 2
141 634.7 36.3 612.7 33.5 14.4 0.188 2
142 * 635.8 36.7 601.3 33.8 23.0 0.191 2
143 * 637.1 36.2 587.5 33.4 32.9 0.190 2
144 * 637.8 36.4 570.6 33.5 45.7 0.195 2
145 * 639.4 35.2 551.6 32.4 58.7 0.191 2
146 * 638.8 34.9 515.5 32.0 84.6 0.195 2
147 * 638.6 32.5 436.2 29.9 138.5 0.192 2
148 * 637.9 27.7 280.9 25.5 248.0 0.189 2
149 638.0 24.6 217.1 23.0 285.9 0.184 1
150 637.8 25.9 229.9 24.0 292.2 0.194 1
151 652.3 21.1 203.6 20.0 241.0 0.146 1
152 658.5 18.1 189.3 17.4 178.9 0.104 0
153 638.4 25.4 227.8 23.6 288.1 0.190 1
154 633.4 28.2 258.0 26.0 288.0 0.208 2
155 557.2 25.7 215.6 23.9 254.0 0.199 1
156 635.5 25.3 230.7 23.6 278.2 0.186 1
157 627.6 29.6 254.7 27.2 305.7 0.222 2
158 647.3 21.6 208.5 20.4 240.8 0.149 1
159 662.3 18.3 191.9 17.6 182.9 0.106 0
160 642.2 25.6 231.1 23.7 288.2 0.190 1
161 642.6 27.5 272.9 25.3 295.9 0.195 2

* - Unstable boiling

A - Disagreement between oxygen and hydrogen heat load, the heat load from
hydrogen was used to generate graphs
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TABLE C2.

RL-10 GOX HEAT EXCHANGER
UNITED AIRCRAFT PRODUCT, INC.
PERFORMANCE TEST DATA
f (OXIDIZER CIRCUIT)
- UNIT'#1 -

TEST POINT T Oin P Oin T Oout P Oout Q  Flow Rate
(R) (psia) (R) (psia) (Btu/s) (1bm/s)

'

| (TANK HEAD IDLE’

NORMAL ORIENTATION)

- 130 176.4  31.0 578.3 30.2 42.3 0.277
o131 176.6  31.3 600.2 30.4 33.9 0.220
' 132 175.7  29.9 601.9 29.1 45.5 0.267
133 176.6  31.3 600.8 30.4 43.6 0.283
b 134 176.3  29.2 600.1 28.4 26.8 0.284

135 175.9  30.2 602.1 29.7 35.0%* 0,210
‘ 136 176.8 31.4 602.9 30.6 74.9  0.251
o137 174.4  28.1 596.8 26.6 43.2 0.414
-~ 138 172.1  27.7 581.3 25.2 74.3** 0.515
139 176.1 33.1 602.3 32.0 49.8** 0.305

l éfuMPED IDLE - NORMAL ORIENTATION)

| L
I 140 * 174.0 87.7 540.6 88.0 0.8 0.005 ***
| 141 174.0 90.8 631.9 90.7 14.4  0.076 ***
142 * 174.0  89.3 634.2 89.4 23.0 0.121 ***
143 * 174.0 90.2 636.1 90.0 32.9  0.173 **x
144 * 174.0  90.0 638.1 89.8 45.7  0.239 **x
145 % 174.0 88.2 639.6 87.7 58.7  0.307 ***
146 * 174.0 88.9 636.5 88.1 84.6  0.444 **x*
147 * 174.0 87.8 612.3 85.0 138.5 0.747 ***
148 * 174.7 82.6 411.1 77.3 248.0 1.766 ***
149 166.0 82.8 195.6 71.9 285.9 3.874
150 166.6 87.1 199.6 80.4 292.2 2.537
151 166.5 85.0 197.9 78.1 241.0 3.291
152 166.5 86.3 199.2 81.8 178.9 2.869
153 166.3 86.1 197.7 78.3 288.1 2.928
154 166.8 87.9 276.9 82.1 288.0 2.287
155 166.5 86.8 199.0 81.2 254.0 2.696
156 169.2  90.5 204.1 84.5 278.2 2.573
157 168.4  90.4 209.7 83.3 305.7 2.664
158 168.5 90.0 200.0 84.7 240.8 2.773
159 168.0 89.7 200.2 85.3 182.9 2.845
160 167.9  89.7 199.1 82.5 288.2 2.800
. 161 174.3  86.9 379.8 82.9 295.9 2,215 ***

- Unstable boiling

** - Q calculated from oxygen test data

* % %k
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Exit

Quality

VAPOR
92%
VAPOR
VAPOR
VAPOR

Pressure

Oscillation

(psi)

+/- 0.
+/- 0.

+/- 0.112

+/-
+/-
+/-

+/-
+/-
+/-

- Oxygen flow rate calculated from Q calculated from hydrogen test data

0
0
0.
+/- 0.
2
1
0

.279
.119
.298
.219
.767
.002
.483
.666
.414
.238
.819
.619
.266
.358
.498
.313
.451
.675
.325
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.561
+/-15.
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TABLE C3

RL10 GOX HEAT EXCHANGER
UNITED AIRCRAFT PRODUCT, INC.
(HYDROGEN CIRCUIT)

- UNIT #2 -

TEST POINT. T Oin P 0in T Oout P Oout AP q Flow Rate
(R) (psia) (R) (psia) (psi) (Btu/s) (1bm/s)

(PUMPED IDLE - NORMAL ORIENTATION)

1* 639.9 33.8 604.9 31.5 2.30 22.9 0.188
2 * 639.8 34.5 594.1 32.1 2.40 30.9 0.194
3 * 639.3 33.8 584.1 31.4 2.40 36.8 0.191
4 * 638.8 33.2 576.2 30.9 2.30 41.5 0.190
5 * 639.1 33.3 552.6 31.0 2.30 58.7 0.194
6 * 637.5 32.8 532.8 30.4 2.40 71.3 0.194
7* 637.5 31.7 497.0 29.5 2.20 94.1 0.190
8 * 637.0 29.3 396.0 27.4 1.90 162.1 0.193
9 * 636.5 26.3 271.5 24.6 1.70  259.3 0.193
10 636.0 24.2 219.8 22.8 1.40 293.6 0.191
11 635.4 24.3 223.8 22.9 1.40 291.9 0.192
12 647.9 20.9 207.8 19.9 1.00 252.8 0.156
13 653.2 17.6 187.3 17.1 0.50 181.1 0.106
14 642.7 23.2 219.7 21.8 1.40 287.1 0.184
15 635.7 25.8 236.8 24.0 - 1.80 306.5 4 0.208
16 638.1 23.8 221.6 22.3 1.50 293.7 & 0.191
(TANK HEAD IDLE - INVERTED ORIENTATION)
17 596.8 16.2 478.2 16.0 0.20 16.9 0.040
18 599.4 18.9 525.2 18.2 0.70 18.6 0.071
19 601.3 24.1 549.1 22.9 1.20 20.6 0.112
20 601.9 25.8 556.7 24.4 1.40 19.4 0.122
21 599.3 23.0 551.8 21.9 1.10 17.2 0.103
22 602.9 15.1 381.2 15.1 0.00 15.3 0.019

* - Unstable boiling

A - Disagreement between oxygen and hydrogen heat load, the heat load from
hydrogen was used to generate graphs
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TABLE C4

RL10 GOX HEAT EXCHANGER
UNITED AIRCRAFT PRODUCT, INC.
PERFORMANCE TEST DATA
(OXIDIZER CIRCUIT)

- UNIT #2 -
Pressure
TEST POINT T Oin P Oin_ T Oout P Oout AP Q Fiow Rate Exit Oscillation
(R)  (psia) (R) (psia) (psi) (Btu/s)  (1bm/s)  Quality (psi )
(PUMPED IDLE - NORMAL ORIENTATION)
1* 167.1 89.4 641.1 89.2 0.20 22.9 0.118 ***  VAPOR +/- 6.873
2 * .167.3  88.6 641.2 88.3 0.30 30.9 0.159 *** " +/- 8.784
3 * 167.2 89.9 641.6 ©  89.7 0.20 36.8 0.189 *** " +/-12.062
4 * 166.9 90.2 642.4 89.7 0.50 41.5 0.213 **x* " +/- 9.078
5 * 167.2 89.2 642.2 88.5 0.70 58.7 0.301 *** " +/-12.042
6 * 166.9 89.5 640.5 88.8 0.70 71.3 0.367 *** " +/-10.952
7* 166.9 88.2 636.1 86.5 1.70 9.1 0.486 *** " +/-18.534
8 * 176.9 84.5 582.2 79.3 5.20 162.1 0.914 *** " +/-17.497
9 * 169.4 83.3 302.0 75.2 8.10 259.3 2.192 ***  VAPOR +/- 8.416
10 165.7 82.9 195.3 70.6 12.30 293.6 3.828 - 78% +/- 0.300
(: 1 165.9 84.0 196.0 72.5 11.50 291.9 3.510 VAPOR +/- 0.577
166.0 86.5 198.9 80.0 6.50 252.8 2.810 94% +/- 0.353
13 166.7 85.7 198.9 80.7 5.00 181.1 3.112 55% +/- 0.177
14 166.9  86.2 198.3 78.3 7.90 287.1 2.904 VAPOR +/- 0.232
15 167.1 87.6 232.0 . 80.7 6.90 245.7 ** 2,387 " -/- 0.480
16 166.9 92.0 201.7 - 85.3 6.70 244.0 ** . 1.571 " +/- 0.188
(TANK HEAD IDLE - INVERTED ORIENTATION)
17 173.7 27.4 596.8 27.2 0.20 16.9 0.093 ***  VAPOR +/- 3.197
18 173.8 27.2 600.6 26.9 0.30 18.6 0.196 *** " +/~ 5.065
19 174.4  27.5 598.2 27.3 0.20 20.6 0.219 **x " +/- 7.350
20 175.6  28.9 600.8 28.7 0.20 19.4 0.206 *** " +/- 6.331
21 174.5 27.9 601.8 17.6 0.30 17.2 0.181 *** " +/- 3.863
22 173.6  26.5 594.8 26.3 0.20 15.3 0.164 *** " +/- 4.627
* - Unstable boiling
** - Q calculated from oxygen test data

**%* - Oxygen flow rate calculated from Q calculated from hydrogen test data

108

6208C




*G) - HdWY¥)

"03S/Wa1 — 31V MO14 NIDAXO
¢ $8°2 m_.N Z m_._ ” m_.o

¥ G'¢

O ]
0p0 T —v— — =
-
s
n 5
O
C
5
m
O
£
£ o1+
=
=
o
=
|
d mwl
W

0Z -

"Smg 2692 = dnydtd 3esy %o

"Sluq1 p8°z = Mor4 o

SINIOd N9IS3IA dvn

— uoyDjUBLIO PpuiIoU ‘Z # jun ~
‘ajou Moy} UebBAxo "sa uolpjioso eunssesd puo dnjoid ypay usbixo
*80UDLLLIONIRY 8jp| paduung

*ONI 'LONQA0YHd 14vdOdIv GIUNN

Y3ONVHOX3 LV3H X0O 0L

{
O
Te}

— 00l

— 06l

— 002

~- 082

—8°LL2

—-00%

*03S/NL8 — dNMOId LYAH NIDAXO

109

6208C



g'¢

"9) - Hdv¥d

*03S/WA1 — 3Lvd MOT4 NIDAXO

182

G'Z 4 Gl 3
] ] I |

4

tsd op'y = dv “0

"ShuqL p8 2 = MoLd %0

SINIOd N9IS3Q dvn

— uoljpjuaLIo pulloU ‘7 # jun —

*ajou moj} UsbAxo *sA aunsseld pjjep uebAxo

*a0UDLLLIOLIBY 8P| padwing
"ONI ‘1ONQ00Yd L4vHOdiv Q3LNN

HIONVHOIX3 LV3H X09 O I

Ll
N

©
'ISd — 3UNSSIYd VLTIA NIDAXO

— Ol

1
o

-Vl

110

85208C




“%/n1g 56795 = dnyoLd 1esH

*LJ3 - HdVY¥9

"03S/NET — 3LvY MOT4 NIOAXO

Z2°0302°0 02°0 g1'0 9’0 71°0 rAN0) oL'o0 80°0
0 TJ 1 | | l ] | Gl
I
1
— 91
3 - |
a |
c 4 5
mm“ _ 4
¥ -
2 |
Q g | v - 81
——lll ]
¥9°6-
2%
o
=z , lllllll.lll.ll.lllllllllll-._lnm_
| -
) 1761
2 8 0z
6 -
ol - l 1A
— UOI|DJUSIIO PajIaAUl ‘7 # pun —
‘oju molj uabAxo sA uoipj|oso aunssaud puo dnyoid jpey usbAxo
2 *80UDLULIOLIB] 8jp] PDaH HUD|.
0 "ONI “LONAOYd L4VHOHIV GILNN

“Slwqq 1€°0 = MoLd 0

SINIOd N9IS3Q dvn

H3ONVHOX3 LV3H X0 017

'03S/NL8 — dNXidid LvaH NIOAXO

[

111

6208C




22°0202°002°0
| —l.“ |

"8 - HdVdd

'DAS/NET — ALVY MO14 NIDAXO
m“.o m“.o v“.o Nw_.o

v

1/

tsd G0 = dv 0

"Suq1 €0 = MoLd %0

SINIOd N9IS3a d4vn

— Uol|pjusLIO pajIBAUl Z # jiun —
‘ajod mojy UeBAxo *sA eunssaud pjlep uUebAxo
*30UDLLLIOLIa 8|p| POSH Mup|

"ONI ‘LONACYd L4VHOMIV GALNN
HIONVYHOX3 IV3H X0O Ol

- 80

—Z'l

-Vl

—9°1

—8°1

-2

ISd — 39NSS3dd VE13d N3DAXO

112

8208C




1. Report No. 2. Government Accession No. 3. Recipient’'s Catalog No.

|

|

l

CR-182159 |

4. Title and Subtitle 5. Report Date o
Oxidizer Heat Exchanger Component September 1988 !
Test Report | 6. Performing Organization Code )

|

7. Author(s) 8. Performing Organization Report No. (
Paul G. Kanic FR-19602 :

10. Work Unit No. |
9. Performing Organization Name and Address ‘

United Technologies Corporation | 11. Contract or Grant No. K
Pratt & Whitney
Government Engine Business NAS3-24738

. P.0. Box 108600, West Palm Beach, FL 33410-9600 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Topical Report 9/17/86 to 12/8/86
gﬁ%ﬁa‘m“m Center 14. Sponsoring Agency Code

Cleveland, OH 44135

15. Supplementary Notes

Program Technical Monitor: R. L. DeWitt, NASA Lewis Research Center, Cleveland, OH
Program Manager: J. A. Burkhart, NASA Lewis Research Center, Cleveland, OH

16. Abstract

The RL10-IIB engine, a derivative of the RL10, is capable of multimode thrust operation. This engine
operates at two low-thrust levels: tank head idle (THI), approximately 1 to 2 percent of full thrust, and pumped ‘
idle (PI), 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient |

engine thermal conditioning; PI operation provides vehicle tank prepressurization and maneuver thrust for low-g
deployment.

Stable combustion of the RL10-IIB engine during the low-thrust operating modes can be accomplished by
using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidizer heat exchanger (OHE)
vaporizes the liquid oxygen using hydrogen as the energy source. This report summarizes the test activity and
post-test data analysis for two possible heat exchangers, each of which employ a completely different design |
philosophy. One design makes use of a low-heat transfer (LHT) core to promote stable oxygen vaporization; the
other design uses a high-heat transfer (HHT) approach in combination with a volume to attenuate pressure and
flow oscillations. The test data showed that the LHT unit satisfied the oxygen exit quality of 0.95 or greater in
both the THI and PI modes while maintaining stability. The HHT unit fulfilled all PI requirements; data for
THI satisfactory operation is implied from experimental data that straddle the exact THI operating point.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Space Propulsion Systems
Expander Cycle Engines
Variable Thrust Rockets General Release

Liquid Propellant Rockets
Hydrogen/Oxygen Engine
Heat Exchangers

19. Security Classif. (of this report) | 20. Security Classif. (of this page) 21. No. of Pages 22. Price*
Unclassified Unclassified 120

‘For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-C-168 (Rev. 10-75)

[



